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Modelling of SH-waves in an anisotropic fiber-reinforced layer provides a great deal of sup-
port in the understanding of seismic wave propagation. This paper deals with the propa-
gation of SH-waves in a fiber-reinforced anisotropic layer over a pre-stressed heterogeneous
half-space. The heterogeneity of the elastic half-space is caused by linear variations of density
and rigidity. As a special case when both media are homogeneous and stress free, the derived
equation is in agreement with the general equation of the Love wave. Numerically, it is ob-
served that the velocity of SH-waves decreases with an increase in heterogeneity-reinforced
parameters and decrease in initial stress.
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1. Introduction

The propagation of seismic waves in anisotropic elastic media is unlike in comparison to their
propagation in isotropic media. So, the study of seismic wave propagation in anisotropic elastic
layered media becomes important to understand the nature of these waves in some complex
media. Other types of layers which may be present in the interior of the Earth are reinforced
concrete media. The reinforced layers are comprised due to excessive initial stresses present in
the Earth. Fiber-reinforced composites are widely used in engineering structures, geophysical
prospecting, civil engineering and mining engineering. So the investigation of shear waves in
such media become obligatory with a vision to its application to geomechanics. The normal
feature of a reinforced concrete medium is that its constituents, namely steel and concrete
together, act as a single anisotropic unit as long as they persist in the elastic condition, i.e.,
the components are bound side by side so that there is no relative motion between them. There
are large numbers of fiber-reinforced composite materials which exhibit anisotropic behavior,
for example alumina, reinforced light alloys, fibreglasses and concrete. Spencer (1972) was the
first who represented fiber-reinforced anisotropic materials with constitutive equations. Later,
Belfield et al. (1983) presented the method of introducing a continuous self-reinforcement in
an elastic solid. Chattopadhyay and Choudhury (1995) discussed some important results of
propagation of seismic waves in fiber-reinforced materials. Chattopadhyay et al. (2012) studied
propagation of SH-waves in an irregular inhomogeneous self reinforced layer lying over a self-
reinforced half-space.
For seismologists, the propagation of seismic wave in elastic and reinforced layered media

is useful to understand earthquake disaster prevention, oil exploration and groundwater pro-
specting. The geotechnical study reveals that the material properties such as heterogeneity and
anisotropy of the Earth change rapidly beneath its surface, and these properties affect the propa-
gation of seismic waves. Also, the effect of initial stresses on shear waves, which is largely present
in the Earth due to a slow process of creep, temperature, pressure, and gravitation cannot be
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ignored. In order to understand the underground response of seismic wave propagation towards
the material properties and initial stresses of the Earth, researchers and seismologists generally
prefer heterogeneous elastic models in semi-infinite domains. Due to large applications, pre-
stressed Love/SH-waves in different media attract researchers’ interests even nowadays. Li et al.
(2004) investigated the influence of initial stresses on the Love wave propagation in piezoelectric
layered structure. Du et al. (2008) presented an emphasis on the effect of initial stress on the
Love wave propagation in a piezoelectric layer in the presence of a viscous liquid. Zakharenko
(2005) studied the propagation of Love waves in a cubic piezoelectric crystal. Qian et al. (2004)
developed a mathematical model to study the effect of Love wave propagation in a piezoelectric
layered structure with initial stresses. Wang and Quek (2001) discussed propagation of Love
waves in a piezoelectric coupled solid medium. Zaitsev et al. (2001) discussed propagation of
acoustic waves in piezoelectric conductive and viscous plates. The supplement of surface wave
analysis and other wave propagation problems to anisotropic elastic materials has been a sub-
ject of many studies; see for example Musgrave (1959), Crampin and Taylor (1971), Chadwick
and Smith (1977), Dowaikh and Ogden (1990), Mozhaev (1995), Nair and Sotiropoulos (1999),
Destrade (2001, 2003), Ting (2002), Ogden and Singh (2011, 2014).

SH-waves cause more destruction to the structure than the body waves due to slower atte-
nuation of the energy. Many authors have studied the propagation of an SH-wave by considering
dissimilar forms of asymmetry at the interface. Watanabe and Payton (2002) discussed SH-waves
in a cylindrically monoclinic material with Green’s function. Gupta and Gupta (2013) studied
the effect of initial stress on wave motion in an anisotropic fiber reinforced thermoelastic medium.
Sahu et al. (2014) showed the effect of gravity on shear waves in a heterogeneous fiber-reinforced
layer placed over a half-space. Recently, Kundu et al. (2014) analyzed an SH-wave in an initially
stressed orthotropic homogeneous and a heterogeneous half space. Chattopadhyay et al. (2014)
studied the effect of heterogeneity and reinforcement on propagation of a crack due to shear
waves.

The coupled effects of initial stress, heterogeneity and reinforcement on the propagation of an
SH-wave in a fiber-reinforced anisotropic layer overlying a pre-stressed heterogeneous half-space
are studied in this paper. The closed form of the dispersion equation for the shear wave by using
the method of separation of variables and Whittaker’s function is obtained. The effects of all
parameters under considered geometry are discussed graphically.

2. Formulation of the problem

Let H be thickness of a steel fiber reinforced (silica fume concrete) layer placed over a prestressed
heterogeneous half-space. We consider x-axis along the direction of wave propagation and z-axis
vertically downwards (Fig. 1). Let the rigidity, density in the lower half-space are µ2 = µ

′(1+ε1z)
and ρ2 = ρ

′(1 + ε2z), respectively. Here ε1 and ε2 are heterogeneous parameters of the lower
half-space and having dimensions that are inverse of length.

3. Solution of the problem

3.1. Solution for the upper layer

The constitutive equations for a fiber reinforced linearly elastic anisotropic medium with
respect to a preferred direction (Belfield et al., 1983) are

τij = λekkδij + 2µT eij + α(akamekmδij + ekkaiaj) + 2(µL − µT )(aiakekj + ajakeki)
+ β(akamekmaiaj)

(3.1)
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Fig. 1. Geometry of the problem

where eij = (µi,j+µj,i)/2 are components of strain; are reinforced anisotropic elastic parameters
with the dimension of stress; λ is an elastic parameter. The preferred direction of fibers is given
by a = [a1, a2, a3], a

2
1 + a

2
2 + a

2
3 = 1. If a has components that are [1, 0, 0] then the preferred

direction is the z-axis normal to the direction of propagation. The coefficients µL and µT are the
longitudinal shear and transverse shear moduli of elasticity in the tender direction, respectively.

Equation (3.1) in the presence of initial compression simplifies as given below

τ11 = (λ+ 2α+ 4µL + β − 2µT )e11 + (λ+ α)e22 + (λ+ α)e33
τ22 = (λ+ α)e11 + (λ+ 2µT )e22 + λe33

τ33 = (λ+ α)e11 + λe22 + (λ+ 2µT )e33

τ12 = 2µT e12 τ13 = 2µT e13 τ23 = 2µT e23

(3.2)

The equations of motion in the upper half-space are

∂τ11
∂x
+
∂τ12
∂y
+
∂τ13
∂z
= ρ1
∂2u1
∂t2

∂τ21
∂x
+
∂τ22
∂y
+
∂τ23
∂z
= ρ1
∂2v1
∂t2

∂τ31
∂x
+
∂τ32
∂y
+
∂τ33
∂z
= ρ1
∂2w1
∂t2

(3.3)

For the SH-wave propagation along the x-axis, we have

u1 = 0 v1 = v1(x, z, t) w1 = 0 (3.4)

Taking transverse isotropy and setting a2 = 0, we get from Eqs. (3.3)

τ12 = µT
(

P
∂u2
∂x
+R
∂u2
∂z

)

τ23 = µT
(

R
∂u2
∂z
+Q
∂u2
∂x

)

τ11 = τ22 = τ33 = τ23 = τ13 = 0
(3.5)

where

P = 1 + (µ∗ − 1)a21 Q = 1 + (µ∗ − 1)a23 R = (µ∗ − 1)a1a3 µ∗ =
µL
µT
(3.6)

In the absence of body forces, Eq. (3.3) becomes

∂τ21
∂x
+
∂τ22
∂y
+
∂τ23
∂z
= ρ1
∂2v1
∂t2

(3.7)

where ρ1 is density of the layer.
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Using Eqs. (3.5)-(3.7), we get

P
∂2v1
∂x2
+ 2R

∂2v1
∂x∂z

+Q
∂2v1
∂z2
=
ρ1
µT

∂2v1
∂t2

(3.8)

In order to solve Eq. (3.8), we take

v1(x, z, t) = ξ(z)e
ik(x−ct) (3.9)

Here, k is the wave number; c is the phase velocity of simple harmonic waves with a wave length
2π/k.
From Eq. (3.8) and Eq. (3.9), we get

Q
∂2ξ(z)

∂z2
+ 2Rik

∂ξ(z)

∂z
+
( ρ1
µT
ω2 − Pk2

)

ξ(z) = 0 (3.10)

Let the solution to Eq. (3.10) be

ξ(z) = Ae−iks1z +Be−iks2z (3.11)

where

sj =
1

Q

[

R+ (−1)j+1
√

R2 +Q
(c2

c21
− P

)

]

j = 1, 2 (3.12)

where A and B are arbitrary constants and c1 =
√

µT /ρ1 is the shear velocity.
From Eq. (3.9) and Eq. (3.11), the equation of displacement of the upper reinforced medium

is given by

u2(x, z, t) =
(

Ae−iks1z +Be−iks2z
)

eik(x−ct) (3.13)

3.2. Solution for the lower half-space

The equation of motion for the lower half-space under initial stress P ′ acting along the x-axis
can be written as (Love, 1911)

∂σ11
∂x
+
∂σ12
∂y
+
∂σ13
∂z
− P ′

(∂̟3
∂y
− ∂̟3
∂z

)

= ρ2
∂2u2
∂t2

∂σ21
∂x
+
∂σ22
∂y
+
∂σ23
∂z
− P ′

(∂̟3
∂x

)

= ρ2
∂2v2
∂t2

∂σ31
∂x
+
∂σ32
∂y
+
∂σ33
∂z
− P ′

(∂̟3
∂x

)

= ρ2
∂2w2
∂t2

(3.14)

where σ11, σ12, σ13, σ21, σ22, σ23, σ31, σ32 and σ33 are incremental stress components, u2, v2
and w2 are components of the displacement vector, P

′ is initial pressure in the lower half-space
and ρ2 is density of the lower half-space. Here, ̟1, ̟2 and ̟3 are rotational components in the
lower half-space, which are defined by

̟1 =
1

2

(∂w2
∂y
− ∂v2
∂z

)

̟2 =
1

2

(∂u2
∂z
− ∂w2
∂x

)

̟3 =
1

2

(∂v2
∂x
− ∂u2
∂y

)

(3.15)

Using the SH-wave conditions u2 = w2 = 0, v2 = v2(x, z, t), Eq. (3.14) can be reduced to

∂σ21
∂x
+
∂σ23
∂z
− P

′

2

(∂2v2
∂x2

)

= ρ2
∂2v2
∂t2

(3.16)
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The stress-strain relations are

σ11 = σ22 = σ13 = σ33 = 0 σ21 = 2µ2exy = 2µ2
1

2

(∂v2
∂x
+
∂u2
∂y

)

σ23 = 2µ2eyz = 2µ2
1

2

(∂w2
∂y
+
∂v2
∂z

)

(3.17)

The heterogeneity of rigidity and density of the lower half-space are

µ2 = µ
′(1 + ε1z) ρ2 = ρ

′(1 + ε2z) (3.18)

Now, substituting the heterogeneity of rigidity from Eq. (3.18) into Eq. (3.17), we have

σ21 = µ
′(1 + ε1z)

∂v2
∂x

σ23 = µ
′(1 + ε2z)

∂v2
∂z

(3.19)

Equation of motion (3.16) with the help of equations (3.18) and (3.19) can be written as

(

1− P ′

2µ′(1 + ε1z)

)∂2v2
∂x2
+
∂2v2
∂x2
− ε1
1 + ε1z

∂v2
∂z
=
ρ′

µ′

(1 + ε2z

1 + ε1z

)∂2v2
∂t2

(3.20)

To solve Eq. (3.20), we take the following substitution

v2 = V (z)e
ik(x−ct) (3.21)

Using Eq. (3.21) in Eq. (3.20), we get

d2V (z)

dz2
+
ε1
1 + ε1z

dV (z)

dz
+
[ρ′

µ′

(1 + ε2z

1 + ε1z

)

c2 −
(

1− P ′

2µ′(1 + ε1z)

)]

k2V (z) = 0 (3.22)

After introducing V (z) = Φ(z)/
√

(1 + ε1z) into Eq. (3.22) in order to cancel the term dV (z)/dz,
we have

d2Φ(z)

dz2
+
{ ε21
4(1 + ε1z)2

− k2
[(

1− P ′

2µ′(1 + ε1z)

)

− c
2

c23

(1 + ε2z

1 + ε1z

)]}

Φ(z) = 0 (3.23)

where c is the phase velocity and c2 =
√

µ′/ρ′.
Introducing non-dimensional quantities

r =

√

1− P ′

2µ′(1 + ε1z)
− c
2

c22

(ε2
ε1

)

s =
2rk(1 + ε1z)

ε1
ω = kc

in Eq. (3.23), we get

d2Φ

ds2
+
( 1

4s2
+
R

2s2
− 1
4

)

Φ(s) = 0 (3.24)

where R = ω2(ε1 − ε2)/(c22rkε21).
Equation (3.24) becomes the well known Whittaker’s equation (Whittaker and Watson,

1990).
The solution to Eq. (3.24) is given by

Φ(s) = DW r
2
,0(s) + EW− r

2
,0(−s) (3.25)

where D and E are arbitrary constants andW r
2
,0(s),W− r

2
,0(s) are the Whittaker functions. Now

considering the condition V (z) → 0 as z → ∞ i.e. Φ(s)→ 0 as s →∞ in Eq. (3.21), the exact
solution becomes

Φ(s) = DW r
2
,0(s) (3.26)
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The solution to Eq. (3.26) is given by

v2 = V (z)e
ik(x−ct) =

DW r
2
,0(s)√

1 + ε1z
eik(x−ct) (3.27)

Equation (3.27) is the displacement for the SH-wave in the half space.
Now, expanding Eq. (3.27) up to the linear term, we have

v2 = De
−rk(1+ε1z)

ε

√

2rk

ε1

[

1 + (1−R)2rk
ε1
(1 + ε1z)

]

eik(x−ct) (3.28)

4. Boundary conditions

The displacement components and stress components are continuous at z = −H and z = 0,
therefore geometry of the problem leads to the following conditions:
(1) At z = −H, the stress component τ23 = 0.
(2) At z = 0, the stress component of the layer and the half space is continuous, i.e. τ23 = σ23.

(3) At z = 0, the velocity component of both layers is continuous, i.e. v1 = v2.

5. Dispersion relation

The dispersion relation for SH-waves can be obtained by using the above boundary conditions.
Therefore, the displacement for the SH-waves in the in-homogeneous half-space using bounda-
ry conditions (3.1), (3.2) and (3.3) in Eq. (3.13) and Eq. (3.28) becomes (taking Whittaker’s
function W r

2
,0(s) up to linear terms in s)

A(R −Qs1)eis1kH +B(R−Qs2)eis2kH = 0
ik[A(R −Qs1) +B(R−Qs2)]

−D µ
′

µT ζ
e
−
kr

ε1

√

2kr

ε1

[kr

ε1
(1−R) + 1

]

[

(1−R)kr
1 + (1−R)kr

ε1

− kr
]

= 0

A+B −De−
kr

ε1

√

2kr

ε1

[

1 + (1−R)kr
ε

]

= 0

(5.1)

Now eliminating A, B and D from Eqs. (5.1), we obtain










(R−Qs1)eis1kH (R−Qs2)eis2kH 0

ik(R −Qs1) ik(R −Qs2) − µ′
µT ζ
e
−
kr

ε1

√

2kr
ε1
A
[

(1−R)kr
A
− kr

]

1 1 −e−
kr

ε1

√

2kr
ε1
A











= 0 (5.2)

where

A = kr
ε1
(1−R) + 1

On simplifying Eq. (5.2), we get

tan

[

kH

Q

√

R2 +Q
(c2

c21
− P

)

]

=
µ′

µT

1
√

R2 +Q
(

c2

c21
− P

)

[

r − 1−R
1 + (1−R)kr

ε1

]

(5.3)

Equation (5.3) is the dispersion equation of the SH-wave propagation in a fiber-reinforced ani-
sotropic layer over a pre-stressed heterogeneous isotropic elastic half-space.
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• Case 1

If we take a1 = 1, a2 = a3 = 0 then ρ1 → µL/µT and µL → µT → µ1, then P → 1, Q → 1
and R→ 1, therefore Eq. (5.3) reduces to

tan

(

kH

√

c2

c21
− 1

)

=
µ′

µ1

1
√

c2

c21
− 1

[

r − 1−R
1 + (1−R)kr

ε1

]

(5.4)

This is the dispersion equation of a homogenous reinforced medium over a pre-stressed hetero-
geneous half space.

• Case 2

When the lower half-space is homogeneous, that is ε1 → 0, ε2 → 0, which implies that
r =

√

1− P ′2µ′ −
c2

c22
, therefore Eq. (5.3) reduces to

tan

[

kH

Q

√

R2 +Q
(c2

c21
− P

)

]

=
µ′

µT

1
√

R2 +Q
(

c2

c21
− P

)

√

1− P
′

2µ′
− c
2

c22
(5.5)

This is the dispersion equation of an anisotropic reinforced medium over a pre-stressed homo-
genous half space.

• Case 3

When the lower half-space is stress free and homogeneous, that is ε1 → 0, ε2 → 0, P ′ → 0,
which implies that r =

√

1− c2
c22
, therefore Eq. (5.3) reduces to

tan

[

kH

Q

√

R2 +Q
(c2

c21
− P

)

]

=
µ′

µT

1
√

R2 +Q
(

c2

c21
− P

)

√

1− c
2

c22
(5.6)

This is the dispersion equation of an anisotropic reinforced medium over a pre-stressed homo-
genous half space.

• Case 4

For a homogeneous reinforced medium over an homogeneous half space, we take ε1 = 0,
ε2 = 0, P

′ → 0, a1 = 1, a2 = a3 = 0 then ρ1 → µL/µT and µL → µT → µ1, then P → 1, Q→ 1
and R→ 1 therefore Eq. (5.3) reduces to

tan

(

kH

√

c2

c21
− 1

)

=
µ′

µ1

√

1− c2
c22

√

c2

c21
− 1

(5.7)

Equation (5.7) is the classical dispersion equation of SH-waves given by Love (1911) and Ewing
et al. (1957).
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6. Numerical analysis and discussion

To show the effect of heterogeneity parameters, the initial stress parameter and steel reinforced
parameters on SH-wave propagation in a fiber-reinforced anisotropic layer over a heterogeneous
isotropic elastic half-space, we take the data assumed by Gupta (2014) and Gubbins (1990) as
shown in Table 1 and the values of parameters for figures in Table 2. We have plotted the non-
-dimensional phase velocity c/c1 against the dimensionless wave number kH on the propagation
of SH-wave in the fiber-reinforced anisotropic layer by using MATLAB software. The effects of
reinforced parameters a21, a

2
3, initial stress parameter ζ = P

′/(2µ′) and heterogeneity parameters
ε1/k, ε2/k are shown in Figs. 2-5. Figure 2a illustrates the effect of heterogeneity parameters in
the presence of reinforced parameters and stress parameter on the propagation of SH-waves.

Table 1. Data for the fiber-reinforced anisotropic layer and the elastic medium

Symbol Numerical value Units

µT 5.65 · 109 N/m2

µL 2.46 · 109 N/m2

λ 5.65 · 109 N/m2

α −1.28 · 1010 N/m2

β 220.09 · 109 N/m2

ρ1 7800 kg/m3

a23 0.75 –

a21 0.25 –

µ′ 6.34 · 1010 N/m2

ρ′ 3364 kg/m3

Table 2. Values of parameters for the figures

Figure a21 a23 ζ ε1/k ε2/k

2a 0.35 0.65 0.5 – –
2b 0 0 0.5 – –

3a 0.35 0.65 0 – –
3b 0 0 0 – –

4a – – 0.5 0.4 0.4
4b – – 0.5 0.4 0.4

5a – – 0 0.4 0.4
5b – – 0 0.4 0.4

6a 0.35 0.65 – 0.4 0.4
6b 0.35 0.65 – 0.4 0.4

It is clear from this figure that the phase velocity decreases with an increase in the hetero-
geneity parameters. Figure 2b represents the variation of dimensionless phase velocity with the
dimensionless wave number on the propagation of SH-waves for different values of heterogeneity
parameters in the absence of the reinforced parameter for the initially stressed half-space. It is
observed from these curves that as the heterogeneity parameters in the half-space increase, the
velocity of SH-wave decreases. From Figs. 2a and 2b, it is clear that the SH-wave propagation is
more influenced by the heterogeneity parameters in comparison to reinforcement in the upper
layer. It is also seen that for a large value of heterogeneity parameters, the curves of phase
velocities are significantly distanced from each other.
Figure 3a shows the effect of heterogeneity parameters in the presence of reinforced para-

meters on the propagation of SH-waves when the lower half is stress free. It is clear from this
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Fig. 2. Variation of the phase velocity against the wave number for different values of heterogeneity
parameters in the (a) presence of the reinforced parameters and (b) absence of the reinforced parameter

for the initially stressed half-space

Fig. 3. Variation of the phase velocity against the wave number for different values of heterogeneity
parameters in the (a) presence of the reinforced parameters and (b) absence of the reinforced parameter

for the stress free half-space

figure that the phase velocity decreases with an increase in the heterogeneity parameters. Fi-
gure 3b represents the variation of dimensionless phase velocity with the dimensionless wave
number on the propagation of SH-waves for different values of heterogeneity parameters in the
absence of the initial stress and reinforced parameter. It is observed from these curves that as
the heterogeneity parameters in the half-space increase, the velocity of SH-wave decreases.

Figure 4a shows the effect of reinforced parameters a21 and a
2
3on the propagation of SH-

-waves at constant stress and heterogeneity parameters. It is seen from the diagram that as
a21 increases as well as a

2
3 decreases, the velocity of SH-wave decreases. Figure 4b shows the

effect of reinforced parameters a21 and a
2
3on the propagation of SH-waves at constant stress and

heterogeneity parameters. It is seen from the diagram that as a21 decreases as well as a
2
3 increases,

the velocity of SH-wave decreases.

Figure 5a shows the effect of reinforced parameters a21 and a
2
3on the propagation of SH-

-waves at constant heterogeneity parameters in the absence of the initial stress. It is seen from
the diagram that as a21 increases as well as a

2
3 decreases, the velocity of SH-wave decreases.

Figure 5b shows the effect of reinforced parameters a21 and a
2
3on the propagation of SH-waves at

constant heterogeneity parameters in the absence of the initial stress. It is seen from the diagram
that as a21 decreases as well as a

2
3 increases, the velocity of SH-wave decreases.
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Fig. 4. Variation of the phase velocity against the wave number for different values reinforced
parameters at constant stress and heterogeneity parameters

Fig. 5. Variation of the phase velocity against the wave number for different values reinforced
parameters at constant heterogeneity parameters in the absence of the initial stress

Fig. 6. Variation of the phase velocity against the wave number for different values (a) tensile stress
(b) compressive stress in the presence of the heterogeneity parameter and reinforced parameters



Modelling of SH-waves in a fiber-reinforced anisotropic layer... 473

In Fig. 6a, the curves show the effect of tensile stress ζ = P ′/(2µ′) < 0 on the propagation of
the SH-wave in a fiber-reinforced anisotropic layer in the presence of the heterogeneity parameter
in the lower half-space and reinforced parameters in the layer. It is clear from this figure that
the phase velocity increases with an increase in the tensile stress. In Fig. 6b, the curves show the
effect of compressive stress ζ = P ′/(2µ′) > 0 on the propagation of SH-waves in a fiber-reinforced
anisotropic layer in the presence of the heterogeneity parameter in the lower half-space and
reinforced parameters in the layer. It is clear from this figure that the phase velocity decreases
with an increase in the compressive stress.

7. Conclusions

Two layers are considered in the problem analysed in this paper: a fiber-reinforced anisotropic
upper layer and a pre-stressed heterogeneous lower layer with exponential variation in rigidity
and density. The Whittaker function and the method of separation of variables are employed in
order to find the dispersion of SH-waves in the fiber-reinforced layer placed over a pre-stressed
heterogeneous elastic half-space. Displacement of the upper fiber-reinforced layer is derived in
a closed form and the dispersion curves are drawn for various values of heterogeneity, stress
and reinforced parameters. In a particular case, the dispersion equation coincides with the well-
-known classical equation of the Love wave when the upper and lower layer are homogeneous
and stress free. The above results may be used to study the surface wave propagation in a fiber
reinforced medium. This validates the solution.

From above numerical analysis, it may be concluded that:

• In all the figures, the dimensionless phase velocity of SH-waves decreases with an increase
in the dimensionless wave number.

• The dimensionless phase velocity of SH-wave shows a remarkable change with heterogeneity
and reinforced parameters.

• It is observed that the depth increases, the velocity of SH-waves decreases.
• The velocity of SH-waves decreases with an increase in the reinforced parameter of the
upper layer and the inhomogeneous parameter of the lower half-space. This is the property
of seismic wave propagation in the crustal layer.

• The phase velocity increases with an increase in the tensile stress but decreases with an
increase in the compressive stress of the lower half-space.
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